# The status of extracting $\sin(2\alpha_{(eff)})$ by BaBar

#### Vasia Shelkov

LBNL-Berkeley

RPM Meeting, Nov. 12, 2002

- Introduction
- BaBar detector
- Status of  $B^0 o \pi^+\pi^-$  analysis
- Status of  $B^0 o 
  ho^+ \pi^-$  analysis
- Conclusion



## The Cabibbo-Kobayashi-Maskawa Matrix

Mass eigenstates ≠ Flavor eigenstates → Quark mixing

B and K mesons decay weakly
 
$$V_{ud} V_{us} V_{us} V_{ub} V_{ck} V_{cb} V_{cb} V_{cb} V_{cb} V_{tb} V$$

Kobayashi, Maskawa 1973

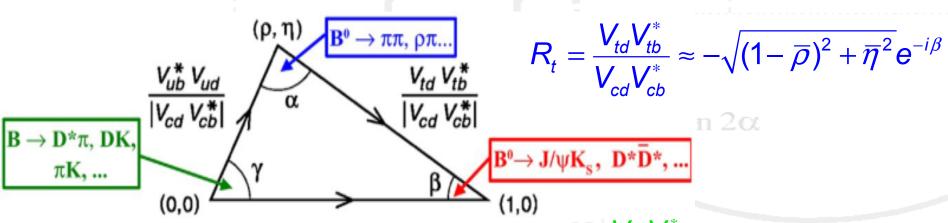
#### *Wolfenstein* Parameterization (expansion in $\lambda \sim 0.2$ ):

$$V_{CKM} \approx \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 \rho - i\eta \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
 CPV phase

## The Unitarity Triangle

#### **B** sector:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

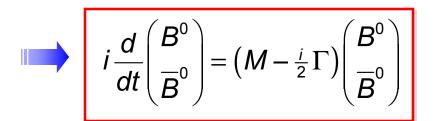

$$\propto A\lambda^3 \propto -A\lambda^3 \propto A\lambda^3$$

#### K sector:

$$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$$

$$\propto \lambda \qquad \propto -\lambda \qquad \propto -A^2\lambda^5$$

#### Expect large CP-violating effects in B-System




$$\gamma = \operatorname{arg} V_{ub}^*$$
 ,  $\alpha = \pi - \gamma - \beta$ 

$$R_{u} = \frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}} \approx -\sqrt{\overline{\rho}^{2} + \overline{\eta}^{2}} e^{i\gamma}$$

## B<sup>0</sup>B<sup>0</sup> Mixing

#### Schrödinger equation governs time evolution of $B^0-\overline{B}^0$ System:



with mass eigenstates: 
$$\left|B_{L}\right> \propto p \left|B^{0}\right> + q \left|\overline{B}^{0}\right>$$
  $\left|B_{H}\right> \propto p \left|B^{0}\right> - q \left|\overline{B}^{0}\right>$ 

$$|B_H\rangle \propto \rho |B^0\rangle - q |\overline{B}^0\rangle$$

Defining:

$$\Delta m_B \equiv M_H - M_L \square 2 | M_{12} |$$

$$\Delta \Gamma_B \equiv \Gamma_H - \Gamma_L = 2 \operatorname{Re}(M_{12} \Gamma_{12}^*) / | M_{12} |$$

#### One obtains for the time-dependent asymmetry:

$$A_{\text{mixing}}(\Delta t) = \frac{N(\text{unmixed}) - N(\text{mixed})}{N(\text{unmixed}) + N(\text{mixed})} = \cos(\Delta m_B \Delta t)$$

where::

unmixed:  $e^+e^- \rightarrow B^0(\Delta t)\overline{B}^0(\Delta t)$ 

and:  $A_{\text{mixing}}(\Delta t = 0) = 1$ 

mixed:  $e^+e^- \rightarrow B^0(\Delta t)B^0(\Delta t)$ 

- measurement of mixing requires the knowledge of B-flavor – "tagging"



### **CP-violaton in the Standard Model**

<u>Three observable</u> interference effects:

$$\left| \frac{\mathbf{q}}{\mathbf{p}} \right| = \left| \frac{1 - \varepsilon_{\mathbf{B}_{\mathbf{d}}}}{1 + \varepsilon_{\mathbf{B}_{\mathbf{d}}}} \right| \neq 1 \implies \operatorname{Prob}(\mathbf{B}^{0} \to \mathbf{\overline{B}}^{0}) \neq \operatorname{Prob}(\mathbf{\overline{B}}^{0} \to \mathbf{B}^{0})$$

#### CP violation in mixing

- -small in the B-system because  $\Delta\Gamma << \Delta M$
- -small in the K-system because relevant weak phase is tiny
- the only mechanism in "superweak" model
- -observed for neutral Kaon decays

$$|\overline{A}_{\bar{f}}/A_f| \neq 1 \Rightarrow Prob(\overline{B} \rightarrow \overline{f}) \neq Prob(B \rightarrow f)$$

#### CP violation in decay

- requires interference between at least two amplitudes amplitudes must have two phases, one that changes sign under CP (e.g. from CKM), and one that doesn't (e.g. strong phase)
- hard to understand theoretically
- observed for neutral Kaons by E731, NA31, KTeV, NA48

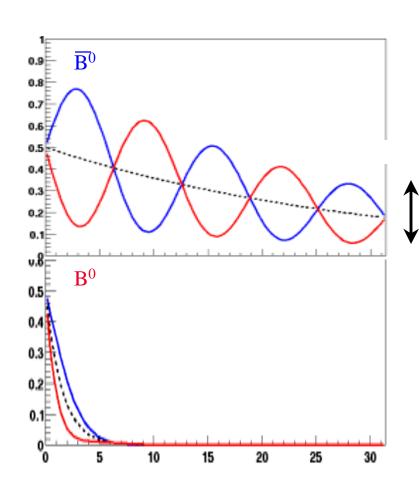
$$Re(\epsilon'/\epsilon) = (17.2 \pm 1.8_{(stat+syst)}) \times 10^{-4}$$

### **CP-violaton in the Standard Model**

#### CP violation in the interference of mixing and decays

- in decays dominated by single amplitude, extraction of CKM elements is clean
- observable in time evolution of  $B^0B^0$  system (assume  $\Delta\Gamma$ =0)

$$\begin{split} f(\overline{B}_{phys}^{0} &\to f_{CP}, \Delta t) = \frac{\Gamma}{4} e^{-\Gamma|\Delta t|} \Big[ 1 + S_{f_{CP}} \sin(\Delta m_d \Delta t) - C_{f_{CP}} \cos(\Delta m_d \Delta t) \Big] \\ f(B_{phys}^{0} &\to f_{CP}, \Delta t) = \frac{\Gamma}{4} e^{-\Gamma|\Delta t|} \Big[ 1 - S_{f_{CP}} \sin(\Delta m_d \Delta t) + C_{f_{CP}} \cos(\Delta m_d \Delta t) \Big] \end{split}$$


$$\lambda_{f_{CP}} = \frac{q}{p} \cdot \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$$

direct CP violation  $\rightarrow$  C  $\neq$  0

indirect CP violation  $\rightarrow S \neq 0$ 

$$S_{\rm f} = \frac{2 \operatorname{Im} \lambda_{\rm f_{\rm CP}}}{1 + |\lambda_{\rm f_{\rm CP}}|^2} \qquad C_{\rm f} = \frac{1 - |\lambda_{\rm f_{\rm CP}}|^2}{1 + |\lambda_{\rm f_{\rm CP}}|^2}$$

## Mixing in $B^0 \overline{B}{}^0$ system



Ratio of oscillation frequency to decay rate:

~ few

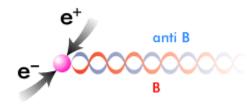
In B decays, the oscillation frequency is small compared to the decay rate!

~ 0.1

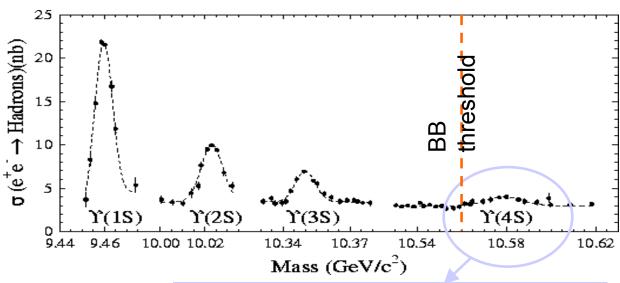


Stanford Linear Accelerator Center

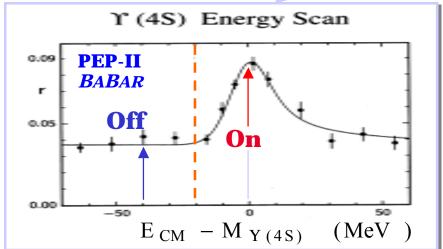
Linac


Fixed Target Experiments

**BABAR** 

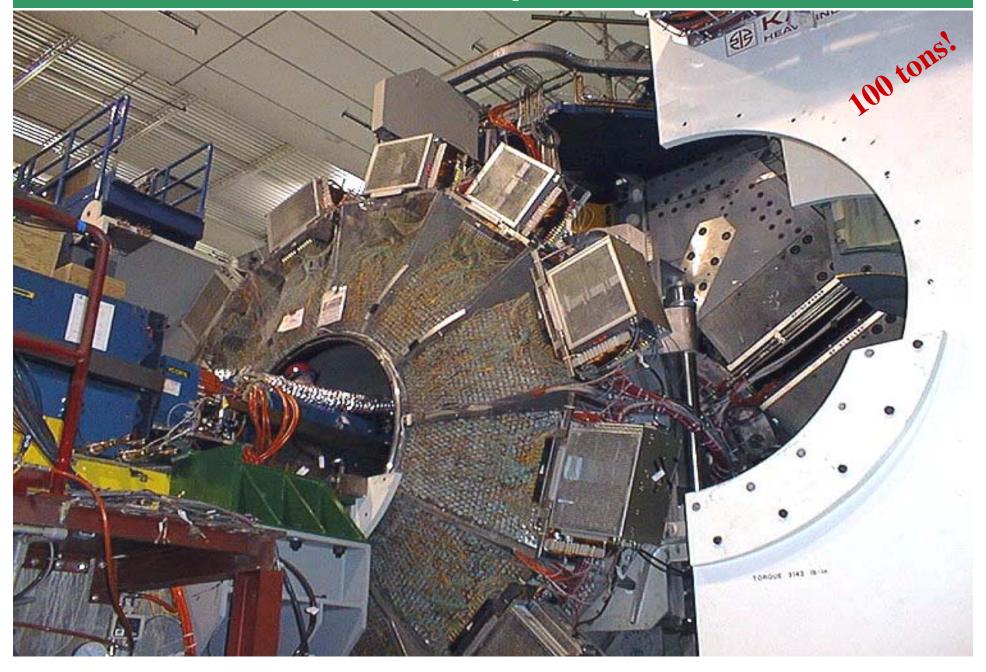

SLD (& MARK II)

# The Asymmetric *B*-Meson Factory PEP-II:

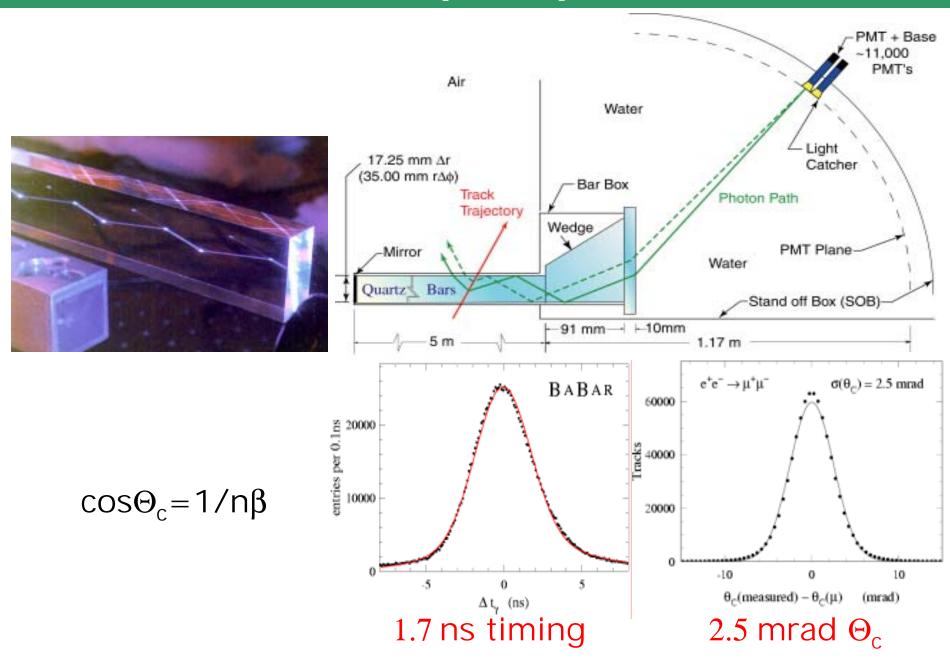

$$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$$



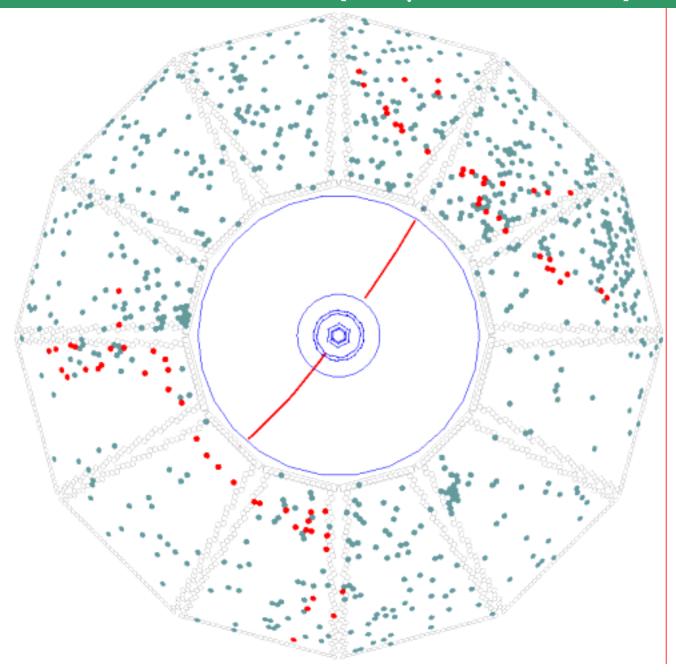
9 GeV e- on 3.1 GeV e+:



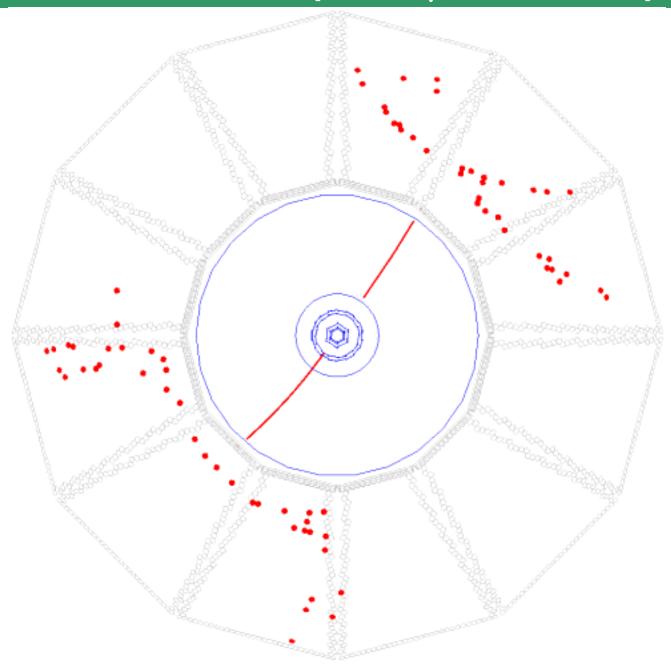

- coherent neutral B pair production and decay (p-wave)
- boost of  $\Upsilon(4S)$  in lab frame :  $\beta \gamma = 0.56$



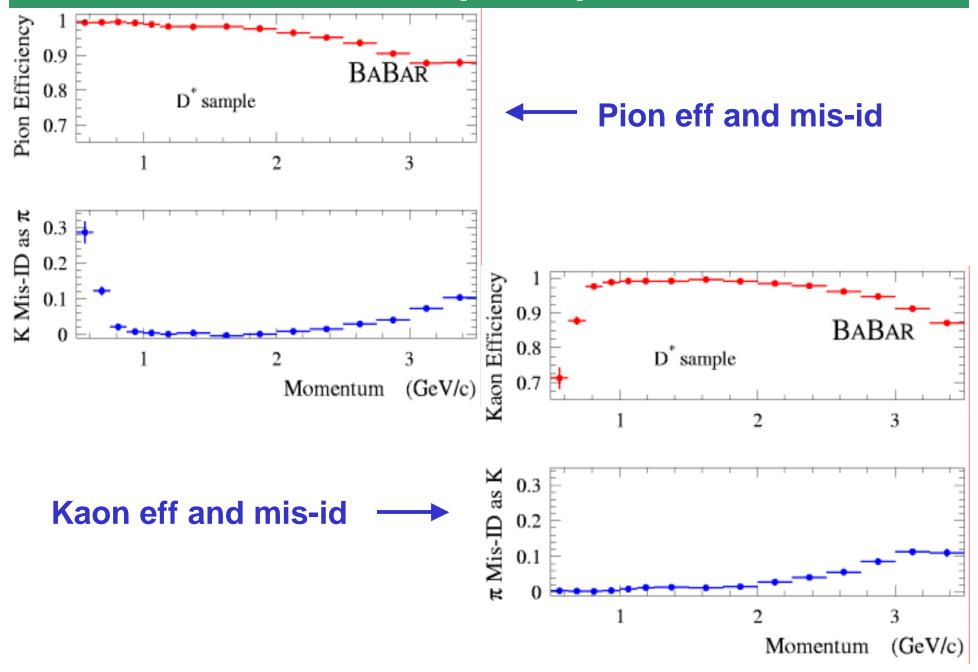

# BaBar detector Instrumented Flux Return **Electro Magnetic Calorimeter** DIRC stand-off box 10752 PMTs in water **Quartz bars Drift Chamber** $e^{\dagger}$ (3.1 GeV) e (9.0 Ge Silicon Vertex Detector


## **DIRC** with open doors

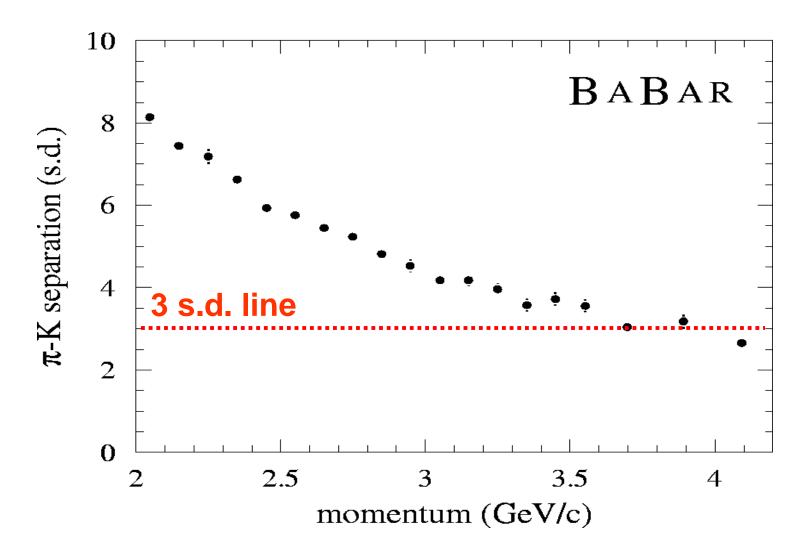



## **DIRC** principle




## DIRC raw hits(0.6µs window)




## DIRC raw hits(0.008µs window)

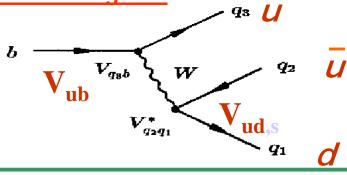


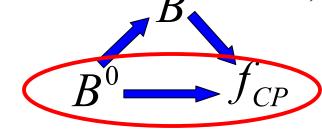
## **DIRC** principle



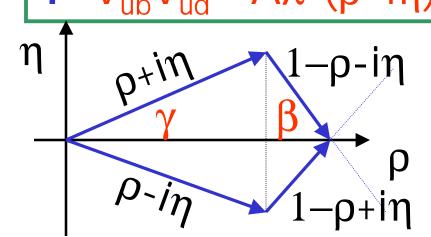
## **DIRC** principle

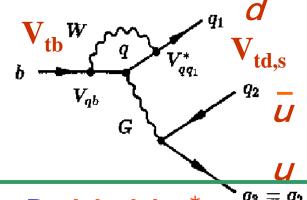



Pi-vs-Kaon separation in units of standard deviations


## Charmless B-decays and CKM angle \(\alpha\)

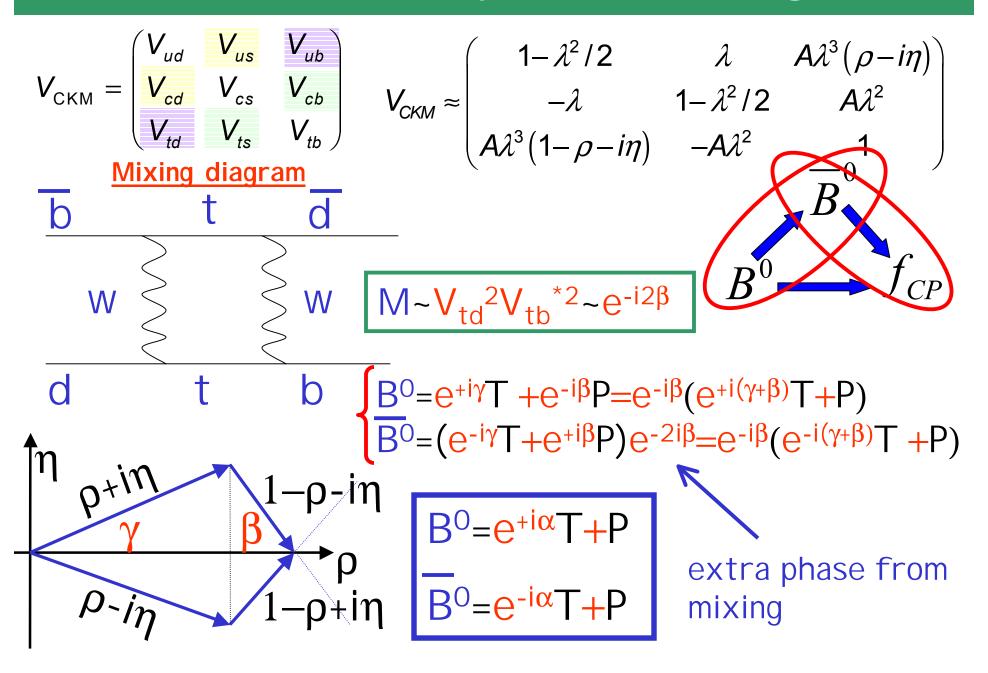
$$oldsymbol{V_{ ext{CKM}}} = egin{pmatrix} oldsymbol{V_{ud}} & oldsymbol{V_{us}} & oldsymbol{V_{ub}} \ oldsymbol{V_{cd}} & oldsymbol{V_{cs}} & oldsymbol{V_{cb}} \ oldsymbol{V_{td}} & oldsymbol{V_{ts}} & oldsymbol{V_{tb}} \end{pmatrix}$$


$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad V_{\text{CKM}} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & \mathbf{D} \end{pmatrix}$$


#### Tree diagram






#### Penguin diagram





q=t, 
$$P \sim V_{tb} V_{td}^{*}$$
  
  $\sim 1 \times A \lambda^{3} (1-\rho+i\eta) \sim e^{-i\beta}$ 

## Charmless B-decays and CKM angle a



## Charmless B-decays and CKM angle a

- every charmless (strangless) B decay is sensitive to  $\alpha$
- the usual suspects are:

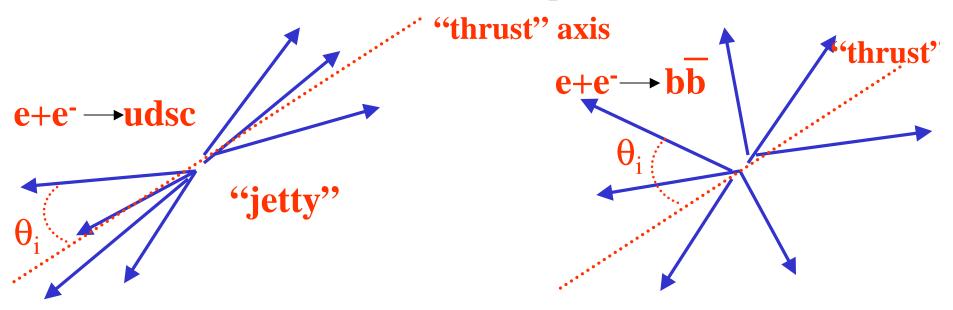
$$\begin{cases} B^0 \to \pi^+ \pi^- \\ B^0 \to \rho^+ \pi^- \end{cases}$$

$$B^0 \to \rho^+ \rho^-$$

- the quality of the channel is characterized by:
  - overall branching ratio
  - unknowns-vs-observables, number of ambiguities
  - experimental accessibility (number of  $\pi^0$ s in the f.s.)

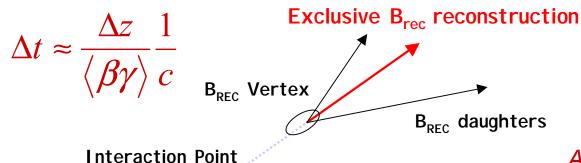
## **Selection of B-decays**

- kinematically select B candidates with  $m_{ES}$ ,  $\Delta E$ 


$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$

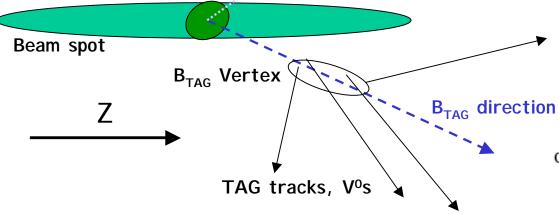
$$\Delta E = E_B^* - E_{\rm beam}^*$$

- provides enough separation for channels with Br~10<sup>-3</sup>

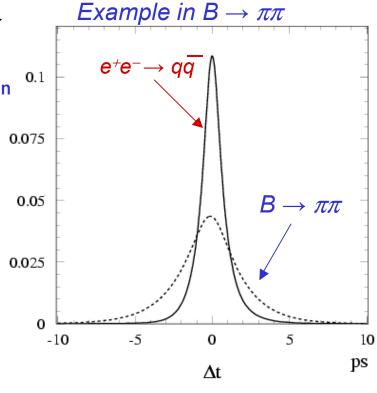

## **Shape information for rare B-decays**

- for "rare B-decays" (Br  $\sim 10^{-4}$ - $10^{-6}$ ), one need to use some extra handles – shape of the event:




$$F = 0.53 - 0.60 \times \sum_{i} p_{i}^{*} + 1.27 \times \sum_{i} p_{i}^{*} \left| \cos(\theta_{i}^{*}) \right|^{2}$$

## Vertexing




 $\Delta z$  resolution dominated by tag side  $\rightarrow$  same resolution function as charmonium (sin2 $\beta$ ) sample

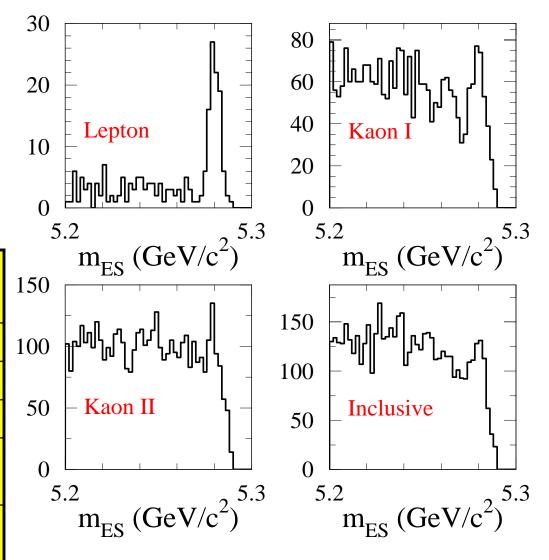
Average Δz resolution ~ 180μm



 Resolution function parameters obtained from data for both signal and background



## **B-flavour tagging**


81/fb  $B \rightarrow h^+h^-$  sample split by tagging category

 Tagging efficiency is very different for signal and bkg

Tagging Efficiencies (%)

Background

| Categor y     | Sign<br>al | ππ   | Κπ   | KK   |
|---------------|------------|------|------|------|
| Lepton        | 9.1        | 0.5  | 0.4  | 0.6  |
| Kaon I        | 16.6       | 8.9  | 12.7 | 7.8  |
| Kaon II       | 19.8       | 15.5 | 19.4 | 14.4 |
| Inclusiv<br>e | 20.1       | 21.5 | 19.2 | 21.7 |
| Untagg<br>ed  | 34.4       | 53.6 | 48.3 | 55.6 |



## CP Violation in $B^0 \to \pi^+\pi^-$ Decays

$$A_{f_{CP}}(t) \propto S_{f_{CP}} \sin(\Delta m_d t) - C_{f_{CP}} \cos(\Delta m_d t)$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$

$$S_{f_{CP}} = \frac{2 \text{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

#### For additional phases:

#### For a single weak phase (tree):

$$\lambda = \frac{q}{p} \frac{\overline{A}_{\bar{f}}}{A_f} = \eta_f e^{-2i(\beta + \gamma)} = \eta_f e^{2i\alpha}$$

$$C_{\pi\pi} = 0, S_{\pi\pi} = \sin(2\alpha)$$

Need branching fractions for  $\pi^+\pi^-$ ,  $\pi^\pm\pi^0$ , and  $\pi^0\pi^0$  to get  $\alpha$  from  $\alpha_{\rm eff}$   $\rightarrow$  isospin analysis

$$\lambda_{\pi\pi} = e^{2i\alpha} \frac{1 + |P/T| e^{i\delta} e^{i\gamma}}{1 + |P/T| e^{i\delta} e^{-i\gamma}}$$

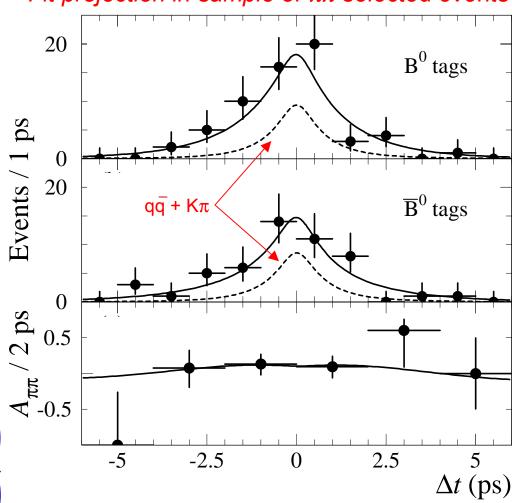
$$C_{\pi\pi} \propto \sin(\delta)$$

$$S_{\pi\pi} = \sqrt{1 - C_{\pi\pi}^2} \sin(2\alpha_{\text{eff}})$$

$$C_{\pi\pi} \neq 0$$
,  $S_{\pi\pi} \sim \frac{\sin(2\alpha_{\text{eff}})}{\sin(2\alpha_{\text{eff}})}$ 

## **CP** Asymmetry Results

#### Fit projection in sample of $\pi\pi$ -selected events


#### **Preliminary**

$$S_{\pi\pi} = 0.02 \pm 0.34 \pm 0.05$$
  
 $C_{\pi\pi} = -0.30 \pm 0.25 \pm 0.04$ 

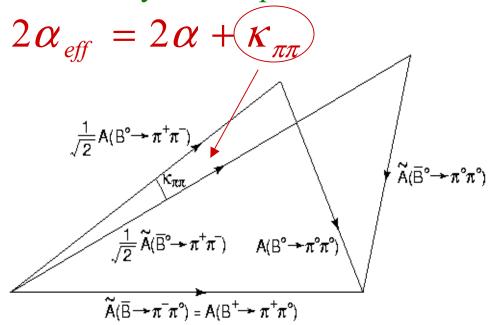
Submitted to Phys Rev (hep-ex/0207055)

$$A_{\pi\pi}(\Delta t) \equiv \frac{N(B_{tag}^{0}) - N(\overline{B}_{tag}^{0})}{N(B_{tag}^{0}) + N(\overline{B}_{tag}^{0})}$$

$$= S_{\pi\pi} \sin(\Delta m_d \Delta t) - C_{\pi\pi} \cos(\Delta m_d \Delta t)$$



## Taming the Penguins. Isospin Analysis.


Gronau and London, Phys. Rev. Lett. 65, 3381 (1991)

- The decays  $B \rightarrow \pi^+\pi^-$ ,  $\pi^+\pi^0$ ,  $\pi^0\pi^0$  are related by isospin
- Central observation is that  $\pi\pi$  states can have I=2 or 0
  - (gluonic) penguins only contribute to I = 0 ( $\Delta I = 1/2$ )
  - $-\pi^{+}\pi^{0}$  is pure I = 2 ( $\Delta$ I = 1/2) so has only tree amplitude

$$\rightarrow (|A^{+0}| = |A^{-0}|)$$

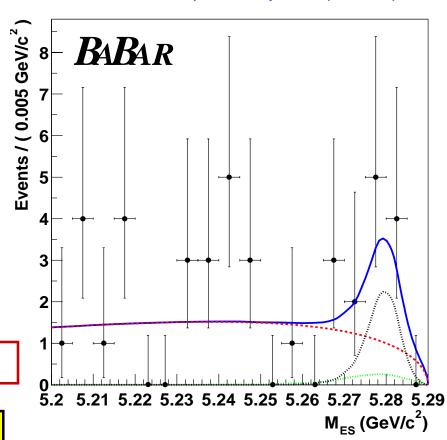
• Triangle relations allow determination of penguin-induced shift in  $\alpha$ 

But, need branching fractions for all three decay modes, and for  $B^0$  and  $\overline{B^0}$  separately



## $B^0 \rightarrow \pi^0 \pi^0$

- Analysis issues:
  - Small signal!  $\rho \pi^0$  feeddown
- Background suppression:
  - Event shape and flavor tagging to reduce qq
  - Cut on  $M(\pi^+\pi^0)$  and  $\Delta E$  to reduce  $\rho \pi^0$  background, then fix in the fit


hep-ex/0207063

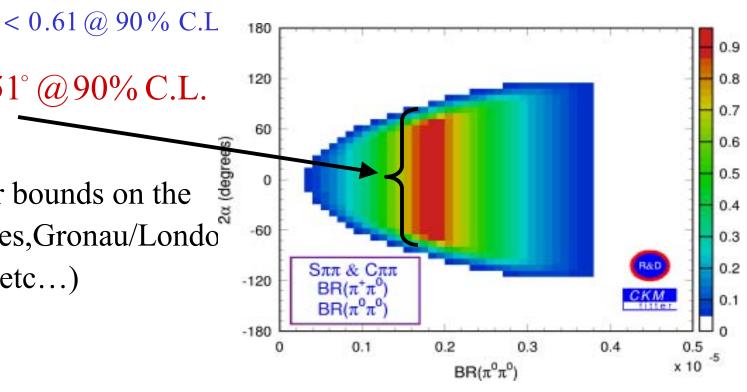
**Preliminary** 

$$N_{\pi^0\pi^0} = 23^{+10}_{-9}$$
  
 $B(B^0 \to \pi^0\pi^0) < 3.6 \times 10^{-6} @ 90\% \text{ C.L.}$ 

Significance including systematic errors =  $2.5\sigma$ 

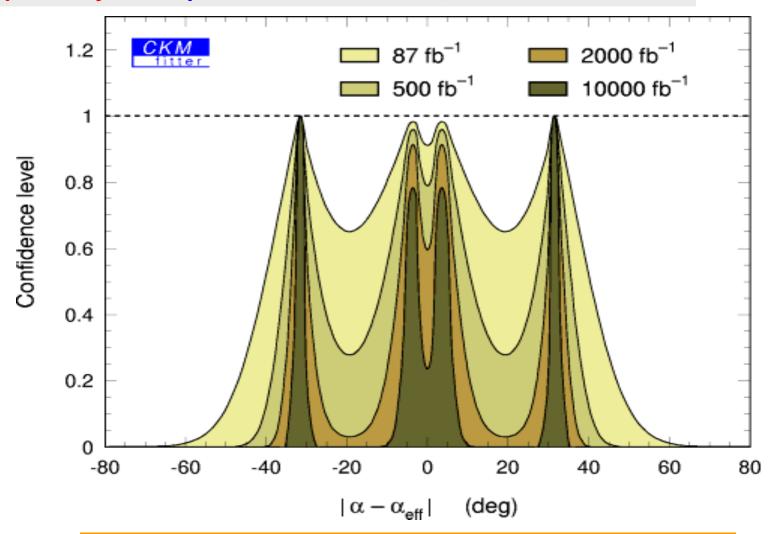
Data after cut on probability ratio ( $\varepsilon \sim 20\%$ )




## Setting a Bound on Penguin Pollution

- Can still get information on  $\alpha$  with only an upper bound on  $\pi^0\pi^0$ :
  - For example: Grossman-Quinn bound (assume only isospin)

$$\sin^{2}(\alpha_{\text{eff}} - \alpha) < \frac{\frac{1}{2} \left[ BR(B^{0} \to \pi^{0}\pi^{0}) + BR(\overline{B}^{0} \to \pi^{0}\pi^{0}) \right]}{BR(B^{\pm} \to \pi^{\pm}\pi^{0})}$$


 $|\alpha_{\rm eff} - \alpha| < 51^{\circ} @ 90\% \text{ C.L.}$ 

Many other bounds on the market (Charles, Gronau/Londo /Sinha/Sinha, etc...)



#### **How about More Statistics?**

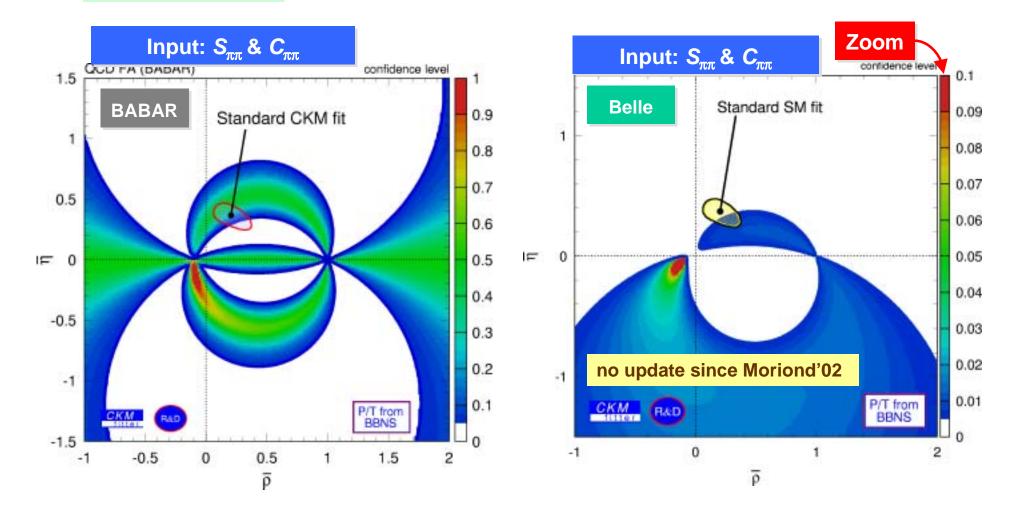
**Isospin analysis for present central values, but more statistics** 





If central value of BR( $\pi^0\pi^0$ ) stays large, isospin analysis cannot be performed by first generation B factories

#### BaBar-vs-Belle


**BABAR** 

 $S_{\pi\pi}$  + 0.02 ± 0.34

 $C_{\pi\pi} - 0.30 \pm 0.25$ 

P/T| and arg(P/T) predicted by QCD FA (BBNS'01)

|              | Belle               |
|--------------|---------------------|
| $S_{\pi\pi}$ | -1.21+0.45(-0.30)   |
| $C_{\pi\pi}$ | -0.94 + 0.32(-0.27) |



# CP-Violating Asymmetries in $B^0 \rightarrow \rho^+ \pi^-, \, \rho^+ K^-$

### Opportunity and challenges

- In principle, can measure a directly, even with penguins
- Much more difficult than  $\pi^+\pi^-$ 
  - Three-body topology with neutral pion (combinatorics, lower efficiency)
  - Significant fraction of misreconstructed signal events and backgrounds from other B decays
  - Need much larger sample than currently available to extract a cleanly

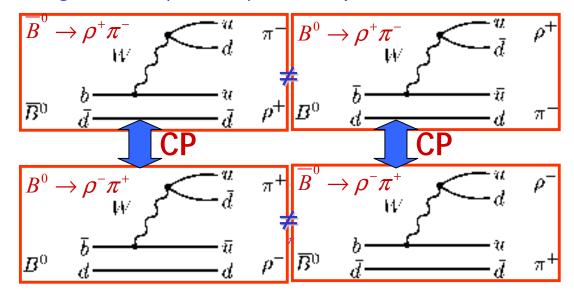
### We perform a "quasi-two-body" analysis:

- Select the  $\rho-$ dominated region of the  $\pi^+\pi^-\pi^0/K^+\pi^-\pi^0$  Dalitz plane
- Use multivariate techniques to suppress qq backgrounds
- Simultaneous fit for  $\rho^+\pi^-$  and  $\rho^+K^-$

#### **Observables**

Not a CP eigenstate, (at least) four amplitudes contribute:

Time-integrated asymmetry:


$$A_{CP}^{\rho h} = \frac{N(\rho^{+}h^{-}) - N(\rho^{-}h^{+})}{N(\rho^{+}h^{-}) + N(\rho^{-}h^{+})}$$

Time evolution includes:

$$(S_{\rho h} + Q\Delta S_{\rho h})\sin(\Delta m_d \Delta t)$$

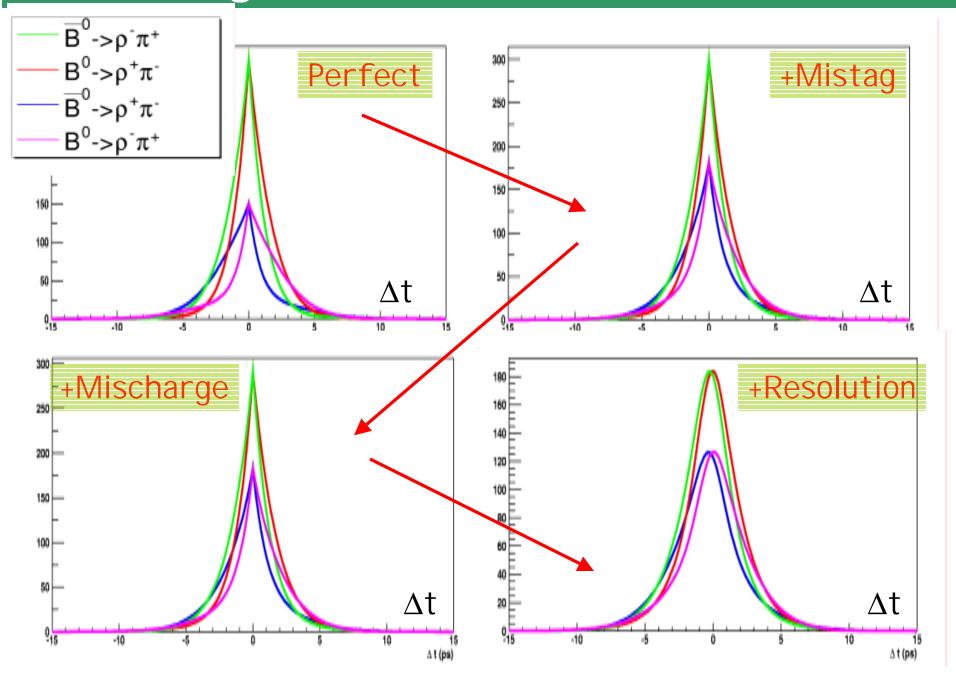
$$(C_{\rho h} + Q\Delta C_{\rho h})\cos(\Delta m_d \Delta t)$$

Q is the  $\rho$  charge

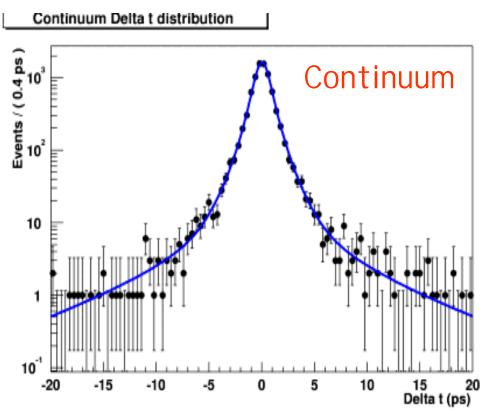


direct CP violation  $\rightarrow A_{CP}$  and C  $\neq 0$ 

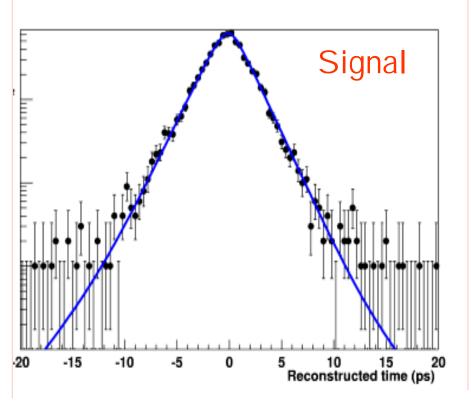
indirect CP violation  $\rightarrow$  S  $\neq$  0


ρK is self-tagging:

$$C_{\rho K}=0, \Delta C_{\rho K}=-1, S_{\rho K}=0, \Delta S_{\rho K}=0$$
 Fit for:


 $\Delta$ C and  $\Delta$ S are insensitive to CP violation

$$A_{\mathit{CP}}^{
ho\pi}, A_{\mathit{CP}}^{
ho \mathit{K}}, C_{
ho\pi}, \Delta C_{
ho\pi}, S_{
ho\pi}, \Delta S_{
ho\pi}$$


## Degradation of time resolution

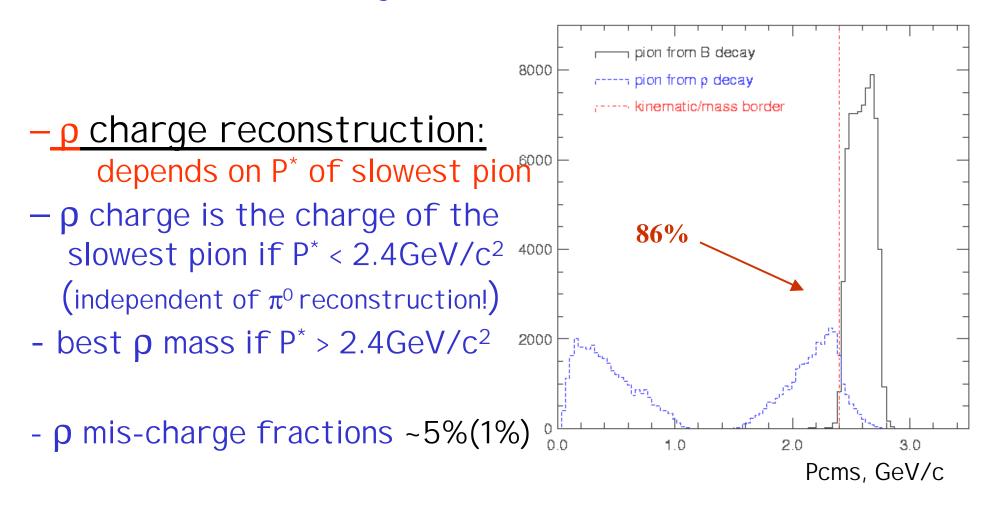


#### PDFs for time distributions

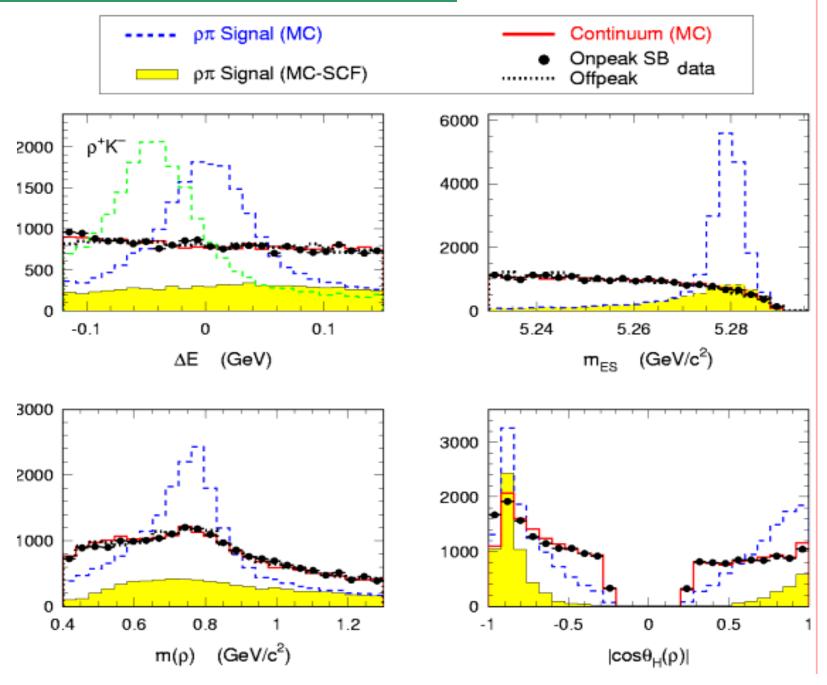


- 3 Gaussian with common mean
- widths are scaled with  $\Delta t$  per-event error(fit is biased otherwise)
- tagging and charge of the final state are
   correlated evaluated from off-peak




- convoluted by BaBar official resolution function extracted from independent, high-statistics sample of B events(the same for all CP analyses at BaBar)
- scaled with ∆t per-event error

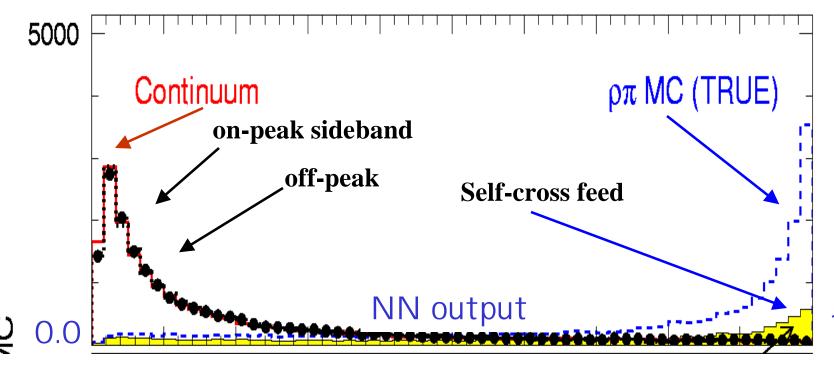
## Charge determination


candidate selection:

based on best  $\pi^0$  mass

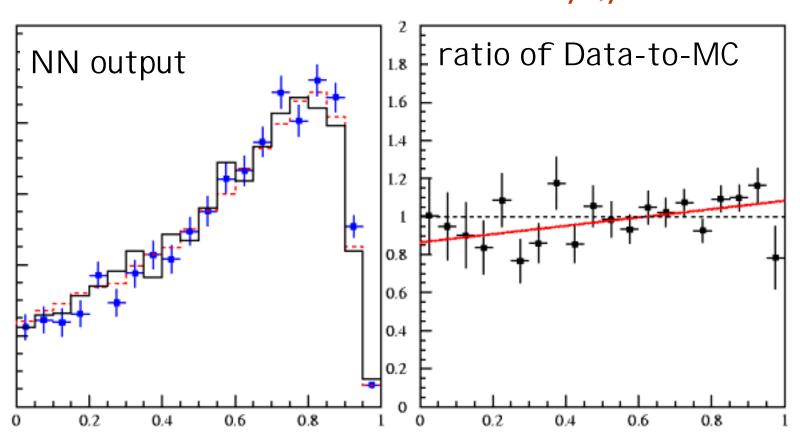
- self-cross feed(wrong  $\pi^0$  fraction) is ~30%(26%)




### Signal-vs-continum PDFs

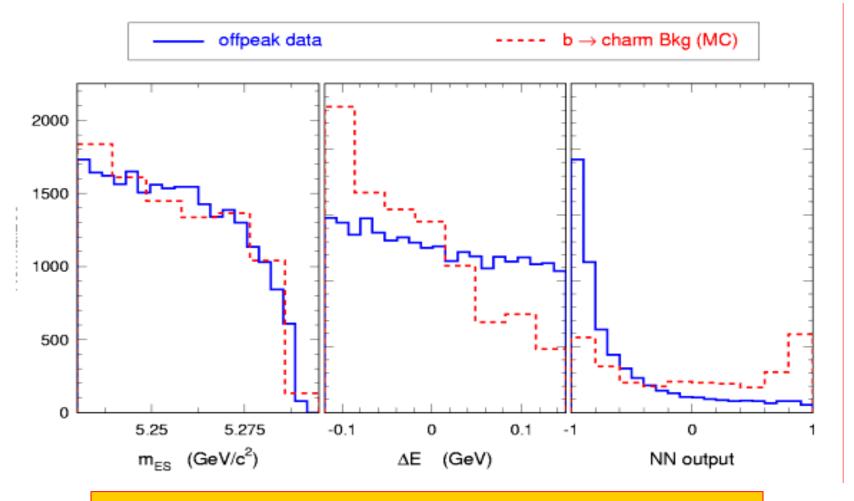


#### Choice of the continum discriminator


- we considered a large number of event shape variables to be used for discrimination against continuum background, and decided to use the simplest one:

NN with 4 variables (Base):  $m(\rho)$ ,  $cos\theta_H(\rho)$ , LO, L2




#### Validation of MVA

- we used fully reconstructed  $B^0 \to D^{\pm} \rho^{\mp}$  events and compared NN output for Data and  $MC(D^{\pm} \rho^{\mp}, \rho^{\pm} \pi^{\mp})$ 



#### B→charm background

Using 34.0x10<sup>6</sup> B<sup>0</sup>B<sup>0</sup> and 26.0x10<sup>6</sup> B<sup>+</sup>B<sup>-</sup> of generic MC events, we found that after all cuts there will be 1.6% (compared to udsc) contamination.



2 PDFs for charged and neutral components are is added

#### Charmless background

started with ~100 2,3,4-body charmless modes from Monte Carlo



all selection cuts are applied, N(expected) > 1 event is required

end up with 29 2,3,4-body charmless modes



the biggest contributions are taken exclusively, others are grouped together according to their CP properties

12 PDFs are added to the Likelihood function

#### Charmless background

- Charged B decays(e.g.  $B^+ \rightarrow \rho^0 \pi^+$ ):

$$P(\Delta t, \text{tag} = \pm, \text{charge} = \pm) = w_{\text{tag,charge}} e^{-|\Delta t/\tau|}$$

$$w_{\text{tag,charge}} = \{B^0 \rho^+; B^0 \rho^-; \overline{B}^0 \rho^+; \overline{B}^0 \rho^-; \text{NoTag}\}$$

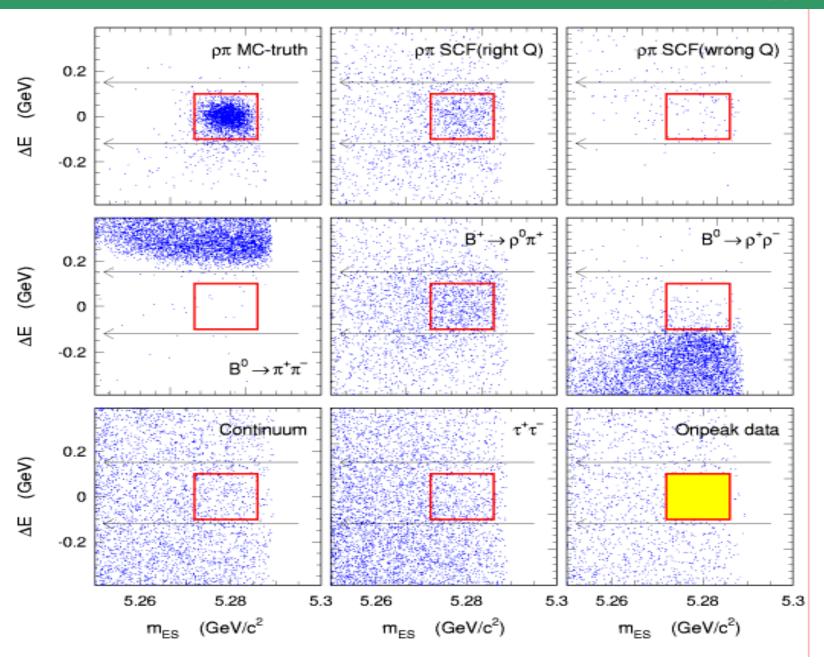
- Neutral self-tagging(e.g.  $B^0 \rightarrow K^{*+}\pi^-$ ):

$$f_{B^0 tag}^{K^{*+}\pi^{-}} = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[ 1 + \frac{\Delta D}{2} + \langle D \rangle \cos(\Delta m_d \Delta t) \right] \mathbf{w}_{\text{charge}}$$

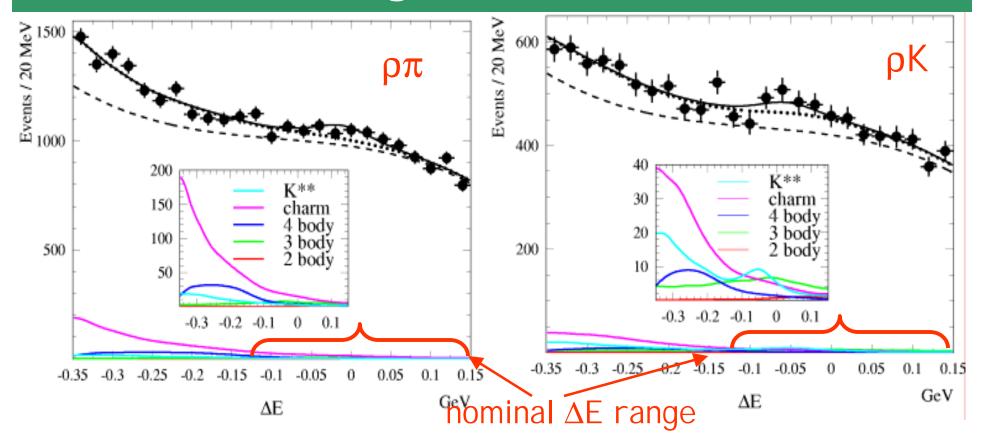
$$f_{B^0 tag}^{K^{*-}\pi^{+}} = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left[ 1 + \frac{\Delta D}{2} - \langle D \rangle \cos(\Delta m_d \Delta t) \right] \mathbf{w}_{\text{charge}}$$

- Neutral non-self-tagging(e.g. $B^0 \rightarrow \rho^+ \rho^-$ ):

$$S_{\it eff}^+ = S_{\it eff}^-, C_{\it eff}^+ = C_{\it eff}^-$$


### Charmless background(charged)

| Cl | Id | Mode                                                        | $N_{ m exp}^{\pi}$ | $N_{ m exp}^K$  | $A_{\pi}$        | $A_K$            |
|----|----|-------------------------------------------------------------|--------------------|-----------------|------------------|------------------|
| 0  | 3  | $B^+ \to \rho^+ K^{*0} (\to K^+ \pi^-)_{[long]}$            | $0.0 \pm 0.0$      | $2.8 \pm 2.9$   | -1               | -1               |
| 0  | 13 | $B^+ \to \rho^+ \rho^0_{[long]}$                            | $21.6 \pm 16.8$    | $0.0 \pm 0.0$   | $0.09 \pm 0.03$  | -                |
| 0  | 43 | $B^+ \to \eta' (\stackrel{\iota}{\to} \rho^0 \gamma) \pi^+$ | $0.0 \pm 1.0$      | $0.0 \pm 0.0$   | $-0.86 \pm 0.03$ | -                |
| 0  | 42 | $B^+ \to \eta'(\to \rho^0 \gamma) K^+$                      | $0.1 \pm 0.1$      | $7.5 \pm 0.6$   | 1                | -1               |
| 1  | 51 | $B^+ 	o \pi^0  ho^+$                                        | $17.1 \pm 11.5$    | $0.0 \pm 0.0$   | -1               | -                |
| 1  | 58 | $B^+ 	o \pi^+  ho^0$                                        | $29.3 \pm 8.4$     | $0.0 \pm 0.0$   | $-0.47 \pm 0.02$ | -                |
| 1  | 55 | $B^+ \to K_S^0 (\to \pi^+ \pi^-) \pi^+$                     | $8.1 \pm 0.9$      | $0.0 \pm 0.0$   | $-0.76 \pm 0.04$ | -                |
| 1  | 53 | $B^+ 	o K^+  ho^0$                                          | $0.9 \pm 0.7$      | $9.9 \pm 7.6$   | 1                | -1               |
| 1  | -  | $B^+ \to K^+ f_X(1300)$                                     | $1.8 \pm 1.4$      | $16.2 \pm 11.3$ | 1                | <b>-</b> 1       |
| 1  | 57 | $B^+ \to K^+ f_0(980) (\to \pi^+ \pi^-)$                    | $1.6 \pm 0.6$      | $14.6 \pm 5.0$  | 1                | <b>-</b> 1       |
| 1  | 95 | $B^+ \to \pi^0 K^{*+} (\to K^+ \pi^0)$                      | $0.0 \pm 0.0$      | $6.2 \pm 3.5$   | -                | -1               |
| 2  | 71 | $B^+ \to K^+ \pi^0$                                         | $0.0 \pm 0.0$      | $9.6 \pm 0.9$   | -                | -1               |
| 2  | 72 | $B^+ \to \pi^+ \pi^0$                                       | $3.5 \pm 0.7$      | $0.0 \pm 0.0$   | -1               | -                |
| 10 | -  | $B^+ \to (K_X^{(**)}\pi)^+ \to K^+\pi^-\pi^+$               | $6.1 \pm 3.3$      | $4.3 \pm 2.3$   |                  |                  |
| 10 | -  | $B^+ \to (K_X^{(**)}\pi)^+ \to \text{other}$                | $6.1 \pm 6.1$      | $0.0 \pm 0.0$   |                  | -                |
| 12 | -  | $B^+ \to (K_X^{(**)}\rho)^+ \to K^+\pi^-\pi^+X$             | $0.8 \pm 0.8$      | $1.7 \pm 1.7$   |                  |                  |
| 7  | -  | $B^+ \to \text{charm}$                                      | $164 \pm 36$       | $41 \pm 10$     | $-0.21 \pm 0.06$ | $-0.75 \pm 0.08$ |


### Charmless background(neutral)

| Cl | Id | Mode                                                      | $N_{\mathrm{exp}}^{\pi}$ | $N_{\text{exp}}^{K}$ | $\Delta C_{\pi}$ | $\Delta C_K$ |
|----|----|-----------------------------------------------------------|--------------------------|----------------------|------------------|--------------|
| 3  | 91 | $B^0 \to \rho^0 K^{*0} (\to K^+ \pi^-)_{[long]}$          | $0.2 \pm 0.2$            | $1.0 \pm 1.0$        | ?                | ?            |
| 3  | 9  | $B^0 \to \rho^- K^{*+} (\to K^+ \pi^0)_{[long]}^{[long]}$ | $0.4 \pm 0.4$            | $2.8 \pm 2.8$        | 1                | -1           |
| 3  | 44 | $B^0 \to \pi^- K^{*+} (\to K_S^0 \pi^+)$                  | $2.5 \pm 1.5$            | $0.0 \pm 0.0$        | 1                | -            |
| 4  | 15 | $B^0 \to \rho^+ \rho^{[long]}$                            | $49.0 \pm 36.8$          | $0.0 \pm 0.0$        | -                | -            |
| 4  | 17 | $B^0 	o  ho^0  ho_{[\mathrm{long}]}^{0}$                  | $2.4 \pm 2.4$            | $0.0 \pm 0.0$        | -                | -            |
| 5  | 56 | $B^0 	o (a_1\pi)^0$                                       | $8.3 \pm 5.6$            | $0.0 \pm 0.0$        | -                | -            |
| 5  | 56 | $B^+ \to (a_1 \pi)^+$                                     | $10 \pm 10$              | $0.0 \pm 0.0$        | ?                | -            |
| 5  | 48 | $B^0 \to \pi^0 K^{*0} (\to K^+ \pi^-)$                    | $0.0 \pm 0.0$            | $12.9 \pm 7.4$       | -                |              |
| 6  | 69 | $B^0 	o K^+\pi^-$                                         | $1.2 \pm 0.2$            | $1.5 \pm 0.2$        |                  |              |
| 6  | 45 | $B^0 \to \pi^- K^{*+} (\to K^+ \pi^0)$                    | $19.5 \pm 11.2$          | $11.5 \pm 6.6$       |                  |              |
| 9  | 86 | $B^0 \to (K_X^{(**)}\pi)^0 \to K^+\pi^-\pi^0$             | $0.0 \pm 0.0$            | $36.5 \pm 27.4$      |                  |              |
| 9  | -  | $B^0 \to (K_X^{(**)}\pi)^0 \to \text{other}$              | $28.7 \pm 28.7$          | $24.4 \pm 24.4$      |                  |              |
| 11 | -  | $B^0 \to (K_X^{(**)}\rho)^0 \to K^+\pi^-\pi^0 X$          | $0.4 \pm 0.4$            | $2.8 \pm 2.8$        |                  |              |
| 8  | _  | $B^0 \to {\rm charm}$                                     | $102 \pm 23$             | $\boxed{13 \pm 4}$   |                  |              |

### Signal and background for $\Delta E$ and $M_{es}$



### Test of B-backgrounds in ∆E sidebands



- in the nominal analysis we cut tight  $-0.12 < \Delta E < 0.15 GeV/c^2$
- $^{--}$  most of the B-background peaks in the low values of  $\Delta E$
- -- we extend our B-background and qq PDFs into negative ΔE sidebands and make sure it agrees with data

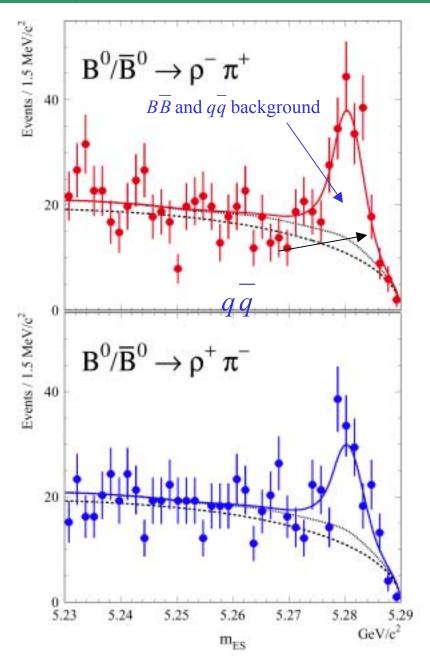
#### **Cross-checks and systematics**

- we a lot of cross checks where we fit samples of:
   signal MC
   signal MC+continuum
   signal MC+B-background
   signal MC+continuum+B-background
   and make sure we get from fir what we put in
- to make sure fit setup is correct, we run hundreds of Toy experiments and check for biases
- for unknown branching ratios(4-body B-background) we vary in wide range the branching ratios(+100%,-50%) and study the associated systematics
- -we used signal sample of  $\rho\pi$  and  $\rho K$  events, to fit for B-lifetime and  $\rho K$  signal sample(self-tagging) to fit for the mixing frequency  $\Delta m$

# Yields and charge asymmetries

**Preliminary** 

$$N_{\rho\pi} = 413^{+34}_{-33}$$


$$N_{\rho\pi} = 413^{+34}_{-33}$$
  
 $N_{\rho K} = 147^{+22}_{-21}$ 

hep-ex/0207068

$$A_{CP}^{\rho\pi} = -0.22_{-0.08}^{+0.08}(stat) \pm 0.07(syst)$$

$$A_{CP}^{\rho K} = 0.19_{-0.14}^{+0.14}(stat) \pm 0.11(syst)$$

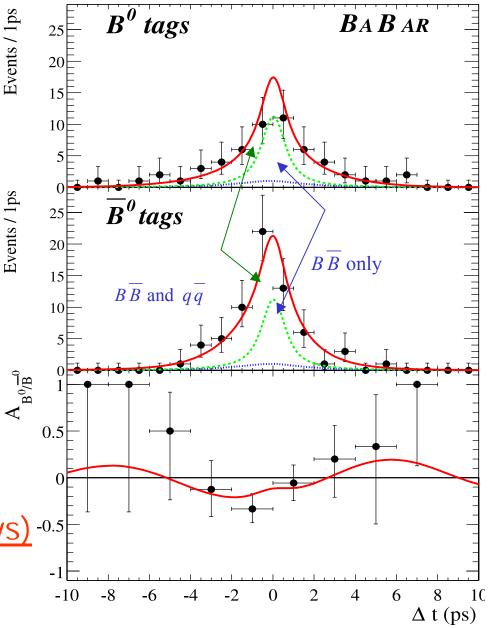
Events / (1.5 mrad) / 1000 / 1000 / 600 DIRC Cerenkov angle (mrad)



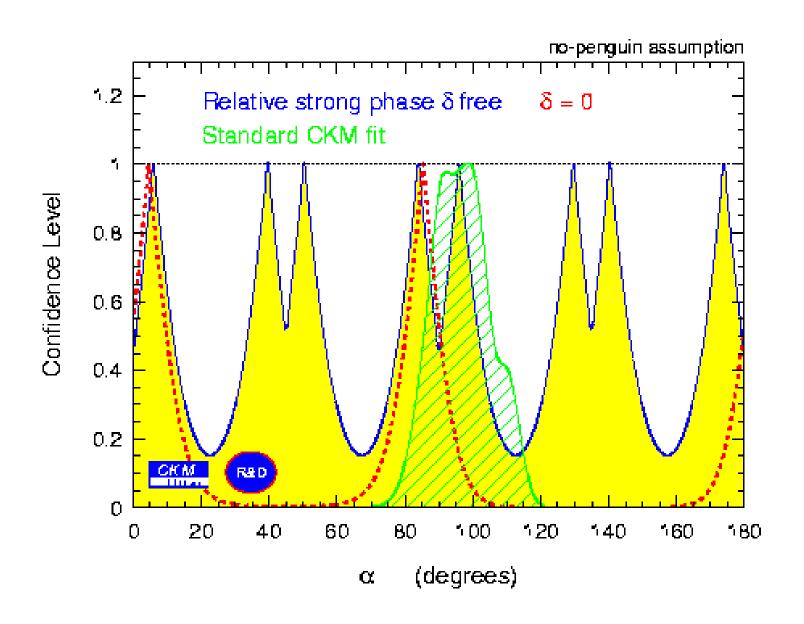
# $B^0 \rightarrow \rho \pi$ time-dependent asymmetry

$$C_{
ho\pi}=0.45^{+0.18}_{-0.19}(stat)\pm0.09(syst)$$
  $S_{
ho\pi}=0.16^{+0.25}_{-0.25}(stat)\pm0.07(syst)$ 

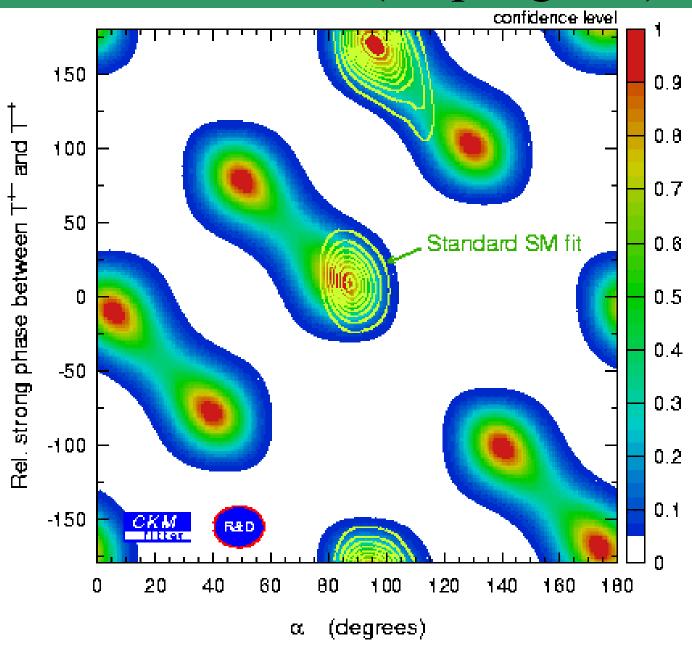
$$S_{\rho\pi} = 0.16^{+0.25}_{-0.25}(stat) \pm 0.07(syst)$$


Preliminary

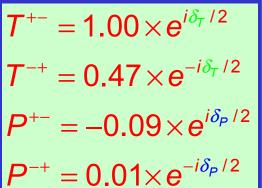
$$\Delta C_{\rho\pi} = 0.38^{+0.19}_{-0.20}(stat) \pm 0.11(syst)$$


$$\Delta S_{\rho\pi} = 0.15^{+0.25}_{-0.25}(stat) \pm 0.05(syst)$$

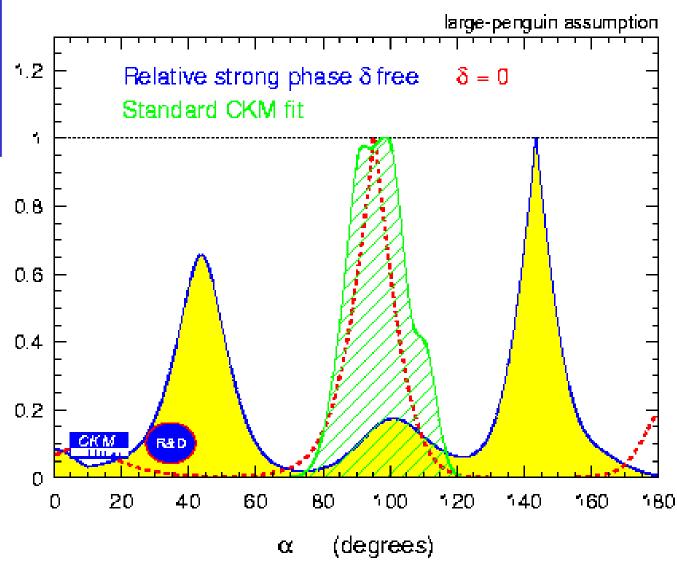
Systematic error dominated by uncertainty on B backgrounds


large value of C excludes Superweak Model at 3.1(2.5 sys) -0.5 sigma level




# Extraction of α(no penguins)




# Extraction of α(no penguins)



# Extraction of α(large penguins)



Confidence Level



#### Conclusion

- program designed to measure "alpha" is well under way in BaBar
- disagreement between BaBar and Belle on C and S for  $\pi^+\pi^-$  analysis remains puzzling
- in overall, the prospects for "alpha" using  $B^0 \rightarrow \pi\pi$  don't look too good...
- BaBar made first preliminary measurement of timedependent CP asymmetries in  $B^0 \rightarrow \rho^+ \pi^- / K$ , the final version of the analysis will be out soon(it would be interesting to see how Belle's numbers look like)
- work towards Dalitz plot analysis is under way  $(B^0 \rightarrow \rho^0 \pi^0,...)$
- new CP modes are under consideration ( $B^0 \rightarrow \rho^+ \rho^-,...$ )